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Abstract Purpose:microRNAshavebeen shown tobe involved in different human cancers.We there-

fore have performed expression profiles on a panel of pediatric tumors to identify cancer-

specificmicroRNAs.Wealso investigated ifmicroRNAsare coregulatedwith their host gene.

Experimental Design: We performed parallel microRNAs and mRNA expression profil-

ing on 57 tumor xenografts and cell lines representing 10 different pediatric solid tu-

mors using microarrays. For those microRNAs that map to their host mRNA, we

calculated correlations between them.

Results: We found that the majority of cancer types clustered together based on their

global microRNA expression profiles by unsupervised hierarchical clustering. Fourteen

microRNAswere significantly differentially expressed between rhabdomyosarcoma and

neuroblastoma, and 8 of themwere validated in independent patient tumor samples. Ex-

ploration of the expression of microRNAs in relationship with their host genes showed

that the expression for 43 of 68 (63%)microRNAs located inside known coding geneswas

significantly correlated with that of their host genes. Among these 43 microRNAs, 5 of

7 microRNAs in the OncomiR-1 cluster correlated significantly with their host gene

MIRHG1 (P < 0.01). In addition, high expression ofMIRHG1 was significantly associated
with high stage andMYCN amplification in neuroblastoma tumors, and the expression
level of MIRHG1 could predict the outcome of neuroblastoma patients independently
from the current neuroblastoma risk-stratification in two independent patient cohorts.

Conclusion: Pediatric cancers express cancer-specific microRNAs. The high expression

of the OncomiR-1 host gene MIRHG1 correlates with poor outcome for patients with
neuroblastoma, indicating important oncogenic functions of this microRNA cluster in

neuroblastoma biology. (Clin Cancer Res 2009;15(17):5560–8)

microRNAs are small, noncoding RNA molecules encoded in
the genomes of plants and animals. These highly conserved,
∼21-nucleotide RNAs regulate the expression of genes by bind-
ing to the 3′-untranslated regions of specific mRNAs, causing
translational inhibition or mRNA degradation (1). As many
mRNAs may share this short sequence, microRNAs are capable
of simultaneously influencing the expression of large sets of

genes. It is estimated that each microRNA can target hundreds
of genes (2); conversely, multiple microRNAs can target a single
gene. Thus far, 701 microRNAs (version 12.0) have been re-
ported to be expressed in human cells.5 Due to their regulatory
roles in gene expression, there is increasing evidence that micro-
RNAs are directly involved not only in normal embryogenesis,
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metabolism, cell growth, differentiation, and apoptosis but also
in pathogenesis of human cancers (3–6). Because most pedi-
atric malignancies are developmental tumors arising from aber-
rant differentiation, we hypothesized that pediatric tumors will
exhibit cancer and tissue-specific microRNA expression profiles
associating with development and the tumorigenic process,
which can be used in classification and prognosis of cancers.

To test this hypothesis, we investigated the expression pro-
files of microRNAs for a panel of 57 pediatric cell lines and hu-
man tumor xenografts for which mRNA profiles were available,
and the majority of which are currently used as pediatric pre-
clinical models for drug screening (7, 8). Using this panel
of samples representing 10 different types of pediatric tumors
(Table 1), we explored whether pediatric tumors differentially
express microRNAs according to their diagnosis using micro-
array technology. A machine learning algorithm and statistical
analysis was applied to the microRNA expression data to iden-
tify tumor-specific profiles for the two major subgroups of can-
cers (neuroblastoma and rhabdomyosarcoma) represented in
our data set, and we validated these findings on independent
neuroblastoma and rhabdomyosarcoma patient tumor sam-
ples. We explored if the microRNAs that map within host mes-
senger RNAs are coregulated with their host mRNAs. Finally, we
investigated if the expression of MIRHG1 gene (formally
C13orf25), which hosts the oncogenic microRNA OncomiR-1
(miR-17-92 cluster), correlated with aggressive disease and
poor outcome for patients with neuroblastoma.

Materials and Methods

Cell lines, xenografts, and primary tumor samples. Neuroblastoma
cell lines (n = 16) were cultured as described (9). Xenograft samples
(n = 41) were described elsewhere (7, 8) and obtained through the Pe-
diatric Preclinical Testing Program established by the National Cancer

Institute (NCI). Anonymous primary snap-frozen neuroblastoma (n = 6)
and rhabdomyosarcoma tumors (n = 6) were acquired from Corporative
Human TissueNetwork andwere deemed exempt fromNCI institutional
review board for this study. The clinical characteristics of these primary
samples are described in Supplementary Table S1.
Microarray and TaqMan real-time reverse transcription-PCR assays for

microRNA expression. Small RNA (<200 bp) was purified using a pre-
viously published protocol (10). microRNA expression profiling was
done on our in-house printed microarrays. Synthetic DNA probes were
designed using the sequences available from the Sanger miRBase

Translational Relevance

microRNAs are small, noncoding regulatory RNAs

that are implicated in cancer development. Because

most pediatric malignancies are developmental tu-

mors arising from aberrant differentiation, we hypoth-

esized that pediatric tumors will exhibit cancer and

tissue-specific microRNA expression profiles associat-

ingwith development and tumorigenic process, which

canbe used in diagnosis and prognosis. Here, wehave

performed microRNAs and mRNA expression profil-

ing on a panel of 57 tumor xenografts and cell lines

representing 10 different pediatric solid tumors using

microarrays.We showed that pediatric cancers differ-

entially express microRNAs specific to their origins

and types. In addition, we showed evidence that the

expression of microRNAs located within protein

coding genes is coregulated with their host gene

transcripts. Finally, we showed that the high expres-

sion of the OncomiR-1 host gene,MIRHG1, is signif-
icantly associated with aggressive neuroblastoma.

This finding warrants further studies of the role of

the OncomiR-1 in neuroblastoma patients with ad-

verse outcomes.

Table 1. Summary of samples

Sample name Type Diagnosis

D212-X Xenograft Glioblastoma
D456-X Xenograft Glioblastoma
SJBT39-X Xenograft Glioblastoma
SJBT56-X Xenograft Glioblastoma
SJGBM2-X Xenograft Glioblastoma
BT45-X Xenograft BT other (medulloblastoma)
BT46-X Xenograft BT other (medulloblastoma)
BT50-X Xenograft BT other (medulloblastoma)
BT36-X Xenograft BT other (ependymoma)
BT41-X Xenograft BT other (ependymoma)
ASLuc-C Cell line Neuroblastoma
BE2-C Cell line Neuroblastoma
CHP134-C Cell line Neuroblastoma
GILIN-C Cell line Neuroblastoma
IMR32-C Cell line Neuroblastoma
IMR5-C Cell line Neuroblastoma
KCNR-C Cell line Neuroblastoma
LAN1-C Cell line Neuroblastoma
LAN5-C Cell line Neuroblastoma
NB1691-C Cell line Neuroblastoma
NBEB-C Cell line Neuroblastoma
SKNAS-C Cell line Neuroblastoma
SKNDZ-C Cell line Neuroblastoma
SKNFI-C Cell line Neuroblastoma
SKNSH-C Cell line Neuroblastoma
SY5Y-C Cell line Neuroblastoma
CHLA79-X Xenograft Neuroblastoma
NB-1382-X Xenograft Neuroblastoma
NB1643-X Xenograft Neuroblastoma
NB1691-X Xenograft Neuroblastoma
NB1771-X Xenograft Neuroblastoma
NBEBc1-X Xenograft Neuroblastoma
NBSD-X Xenograft Neuroblastoma
SKNAS-X Xenograft Neuroblastoma
OS1-X Xenograft Osteosarcoma
OS17-X Xenograft Osteosarcoma
OS2-X Xenograft Osteosarcoma
OS21-X Xenograft Osteosarcoma
SKNEP-X Xenograft Other (diffuse anaplastic

Wilms' tumor)
EW5-X Xenograft Other (Ewing's)
EW8-X Xenograft Other (Ewing's)
BT29-X Xenograft Other (rhabdoid tumor of brain)
KT12-X Xenograft Other (rhabdoid tumor of kidney)
KT16-X Xenograft Other (rhabdoid tumor of kidney)
Unknown1-X Xenograft Other (unknown)
Unknown2-X Xenograft Other (unknown)
Rh28-X Xenograft Rhabdomyosarcoma
Rh30-X Xenograft Rhabdomyosarcoma
RH30R-X Xenograft Rhabdomyosarcoma
Rh36-X Xenograft Rhabdomyosarcoma
Rh41-X Xenograft Rhabdomyosarcoma
Rh65-X Xenograft Rhabdomyosarcoma
KT10-X Xenograft Wilms' tumor
KT11-X Xenograft Wilms' tumor
KT13-X Xenograft Wilms' tumor
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Sequence Database (11) and custom-made by Sigma. Each probe
contained two tandem complementary sequences against each ma-
ture microRNA or its counterpart strand in the hairpin stem-loop
structure, and there were 521 unique probes for human microRNAs
on our in-house microRNA microarrays. An amine group tag was
added on the 5′ of each probe for tethering on Nexterion epoxy
glass slides (Schott). The reference synthetic DNA oligos comple-
mentary to the probes were labeled with Cy3 dye and the sample
with Cy5 dye using miRVana microRNA labeling kit (Ambion). Hy-
bridization was done on the MAUI hybridization systems (BioMicro
System) at 52°C with mixing for overnight. Slides were then washed
in 2× SSC with 0.2% SDS for 15 min at 42°C, 2× SSC at room tem-
perature for 10 min, and 0.2× SSC at room temperature for 10 min.
Finally, slides were dried by centrifugation and scanned in an Agi-
lent microarray scanner (Agilent).

TaqMan microRNA reverse transcription-PCR assays (Applied Biosys-
tems) were done according to the manufacturer's protocol as described
previously (10).

microRNA microarray data filtering and normalization. The Cy3 ref-
erence channel was first normalized using quantile normalization.
Then, low-quality probes were removed using the Cy5 sample channel
with a criterion that required raw intensity of the probe to be larger than
128 fluorescent units for at least 4 samples. Two hundred seven probes
passed this quality filter. After quality filtering, the log2 ratios [log2(Cy5/
Cy3)] were calculated and subsequently normalized by subtracting the
average log2 ratio of the internal control probes. Then, we added a con-
stant value to get positive values. Every probe was printed in duplicate on
the array and the average of these duplicates was used to represent the
final expression measurements. All of the quality-filtered microRNA
and parallel mRNA data can be found on our Web site.6

mRNA microarray experiments. Gene expression profiling was done
on Affymetrix U133 Plus 2.0 arrays according to the manufacturer's in-
struction (Affymetrix). We obtained the gene expression profiling data

6 http://pob.abcc.ncifcrf.gov/cgi-bin/JK

Fig. 1. microRNAs are diagnostic for pediatric tumor samples. A, unsupervised hierarchical clustering showed clustering of the samples according to
the tumor types. We performed two-way hierarchical clustering of 57 pediatric cancer samples using all microRNA expression values after quality filtering.
The Cluster 3.0 software (12) was used, wherein expression values were median-centered per gene and clustered using Pearson correlation distance and
average linkage. B, NCCs were trained to separate neuroblastoma from rhabdomyosarcoma xenograft samples. The centroid for each diagnostic
category was calculated as the average profile across samples. The prediction output of a sample was calculated as the Pearson correlation against the
rhabdomyosarcoma centroid minus the Pearson correlation against the neuroblastoma centroid. Prediction accuracy was evaluated using a leave-one-out
scheme, and all samples were correctly classified (P = 1.6 × 10-4).
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of 38 xenografts from the study by Neale et al. (7) and profiled the rest
samples in our laboratory. Relative expression values were obtained us-
ing Affymetrix PLIER algorithm through Affymetrix Power Tools version
1.8.5 and further log-transformed to base 2.
Hierarchical clustering, nearest centroid classifiers, and statistical

and genomic location analyses. We performed two-way hierarchical
clustering of 57 pediatric cancer samples using all expression values
from microRNA after quality filtering. The Cluster 3.0 software (12)
was used, wherein expression values were median-centered per gene
and clustered using Pearson correlation distance and average linkage.
The result was visualized using TreeView (13).

Nearest centroid classifiers (NCC; ref. 14) were trained to separate
neuroblastoma from rhabdomyosarcoma samples. In the NCC, the cen-
troid for each class was calculated as the average profile across samples.
For a test sample, the prediction output was calculated as the Pearson
correlation against the rhabdomyosarcoma centroid minus the Pearson
correlation against the neuroblastoma centroid. Therefore, a large pre-
diction output suggests that the sample is a rhabdomyosarcoma sam-

ple. Prediction accuracy was evaluated using a leave-one-out scheme, in
which all but one samples were used for training and the status of the
left out sample was predicted by the trained classifier. We used a per-
mutation test to estimate statistical significance of prediction accuracy.
Sample labels were randomly permuted 100,000 times, and for each
randomization, the leave-one-out procedure was repeated, and a P value
was calculated corresponding to the probability to obtain perfect predic-
tions for random sample labels.

To identify the host genes for microRNAs, genomic locations for
microRNAs and mRNA probe sets were retrieved from Sanger miRBase
(version 10.1) and Affymetrix, respectively, and were mapped to the
UniGene. The host genes (represented by probe sets) were identified
for each microRNA by mapping them in the same UniGene with the
same orientation. We calculated the Pearson correlation across all 57
samples. If a microRNA was matched to several probe sets, the largest
absolute correlation was used.
Survival analysis. Cox regression analyses and log-rank tests were

done using the survival R package.7 Expression values of a gene were di-
chotomized into high and low expression using the median as cutoffs.

Results

microRNA expression profiling of pediatric cancers and
classification of cancers using microRNA profiles. We first
hypothesized that the microRNA expression profiles would re-
flect the cancer type for pediatric malignancies. We performed
microRNA microarray analysis of 16 neuroblastoma cell lines
and 41 xenografts including brain tumor (n = 10), neuroblasto-
ma (n = 8), rhabdomyosarcoma (n = 8), osteosarcoma (n = 4),
Wilms' tumor (n = 3), and others (n = 8; Table 1). An unsuper-
vised hierarchical clustering analysis using all 207 microRNA
probes with good quality showed thatmicroRNA expression pro-
files can separate these samples according to their diagnosis
(Fig. 1A). One of the two major branches consists of all except
one neuroblastoma samples, indicating that these samples have
a neuroblastoma-specific microRNA expression profile. The
other major branch contains nonneuroblastoma samples
formed clusters primarily of the same diagnostic categories. For
example, 7 of 8 rhabdomyosarcomas form a tight subcluster as
did 4 of 4 osteosarcomas (Fig. 1A). The property of the sample
clustering shows that there is a clear tumor-specific microRNA
expression profile in these pediatric cancer samples.

To further examine if microRNAs can be used to classify can-
cers, we applied a machine learning algorithm to the microRNA
expression data for the two major subgroups of cancers (neuro-
blastoma and rhabdomyosarcoma) represented in our data set
using all high-quality probes. To avoid classifications heavily
driven by cell line–specific signatures, we used only xenograft
samples in this analysis. We built NCCs (14) to separate the
8 neuroblastoma xenografts from the 8 rhabdomyosarcoma
xenografts using a leave-one-out scheme. All 16 samples were
perfectly diagnosed (P = 1.6 × 10-4; Fig. 1B). Therefore, these ex-
periments showed that neuroblastoma and rhabdomyosarcoma
differentially express tumor-specific microRNAs.
Differential expression of microRNAs distinguishes neuroblasto-

ma versus rhabdomyosarcoma. To identify the tumor-specific
microRNAs that may contribute to the biology of these cancers,
we performed a t statistical test between the two major cancer
types, neuroblastoma and rhabdomyosarcoma, using the
microRNA expression profiles of 8 neuroblastoma and 8 rhab-
domyosarcoma xenograft samples. We found 14 microRNAs

7 http://cran.r-project.org/web/packages/survival/index.html

Fig. 2. Differentially expressed cancer-specific microRNAs for
neuroblastoma and rhabdomyosarcoma. A, comparing the microRNA
expression in rhabdomyosarcoma (n = 8) and neuroblastoma (n = 8)
xenograft samples using a t test, we identified 14 differentially expressed
microRNAs (P < 0.01). Samples and microRNAs were hierarchically
clustered using Pearson correlation distance and average linkage. Data
were centralized prior clustering such that median expression of each
microRNA was zero. B, expression of 8 differentially expressed microRNAs
was validated using TaqMan real-time reverse transcription-PCR in an
independent set of primary neuroblastoma and rhabdomyosarcoma
tumors (P < 0.01), indicating the value of microRNA expression levels in
distinguishing these cancers.
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significantly differentially expressed in these two cancer types
(P < 0.01; false discovery rate = 15%; Fig. 2A). To validate if these
microRNAs are differentially expressed in human primary tumor
samples, we performed TaqMan real-time reverse transcription-
PCR using an independent set of primary neuroblastoma (n = 6)
and rhabdomyosarcoma (n = 6) tumors from patient biopsies.
We found 8 of the 14 microRNAs to be significantly differential-
ly expressed in the patient tumor samples (P < 0.05; Fig. 2B),
showing the potential of using these microRNAs as biomarkers
to distinguish these two cancer types.
Coregulation of microRNA with host gene. Currently, the

control of microRNA expression is largely unclear, and we hy-
pothesized that the expression level of microRNAs mapping

within coding genes is controlled by the promoter of the host
gene. We therefore investigated how many of the microRNAs
on our array map are within and also correlate with their host
mRNAs. Of 207 microRNAs of good quality detected by our ar-
rays, 189 unique microRNAs can be mapped to the human ge-
nome with their genomic coordinates. Among them, 68 (36%)
are located within known coding genes and also have the same
orientation with their host genes. We calculated correlations of
the expression between these 68 microRNAs and their
corresponding mRNAs and found that 43 (63%) were signifi-
cantly coexpressed (r > 0.34; P < 0.01) with their host genes
(Fig. 3; Supplementary Table S2). OncomiR-1, also known as
the miR-17-92 cluster, has been reported to be associated with

Fig. 3. microRNA expression
correlates with their host gene
expression. Genomic locations for
microRNAs and probe sets were
retrieved from Sanger miRBase
(version 10.1) and Affymetrix,
respectively. Genomic locations were
mapped to UniGene clusters. Off 189
microRNAs with known locations, 68
(36%) were located within a UniGene
with the same orientation. For each pair
of microRNA and its host gene located
within the same UniGene, the Pearson
correlation was calculated across all 57
samples. Of 68 microRNAs located
within a UniGene, 43 (63%) were found
to be significantly (P < 0.01) positively
correlated with a probe set from its host
gene. Colors in the heat map represent
z-score normalized (zero mean and
unity variance per microRNA/gene)
expression. Samples (columns) are
sorted with respect to diagnosis, and
mRNAs or microRNAs (rows) are
sorted with respect to genomic
location. Chr, chromosome; Start, start
coordinate of microRNA.
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multiple human malignancies (15, 16). Among these 43 micro-
RNAs, we found that 5 of 7microRNAs in the OncomiR-1 cluster
significantly correlated with the expression level of its host gene
MIRGH1 (r = 0.37-0.49; P < 0.01; Fig. 3), indicating that the level
ofMIRGH1 transcript directly affected the level of these oncogen-
ic microRNAs.
High MIRGH1 expression level is associated with aggressive

behavior and poor outcome in neuroblastoma patients. Because
OncomiR-1 has been reported to be directly downstream of
MYC (17–20), and MYCN is often highly expressed in pediatric
cancers including neuroblastoma and rhabdomyosarcoma (21,
22), we explored if the expression of OncomiR-1 host gene
MIRHG1 was associated with more aggressive phenotype in
our neuroblastoma tumor gene expression database (23, 24).6

We found a significantly higher expression level in MYCN-
amplified tumors and cell lines as well as in higher stage (stage
IV) compared with lower stage and more benign tumors (stage I
and IVS; Fig. 4A). The highest expression was in cell lines partic-
ularly if the MYCN was amplified and the lowest expression was
in normal human tissues (n = 19; Fig. 4A). Furthermore, we
found that high expression ofMIRHG1 is significantly associated
with poor outcome of neuroblastoma patients in our published
cohort consisting of patients of all major stages with or without

MYCN amplification (NCI cohort; P = 0.0002, log-rank test, or
P = 0.0011, univariate Cox model; Fig. 4B and Table 2; ref. 23).
A multivariate analysis showed that the prognostic power of
MIRHG1 expression is independent of current Children's Oncol-
ogy Group risk-stratification (P < 0.05; Table 2).

Finally, we examined if our findings could be validated in an-
other independent neuroblastoma patient cohort reported by
Asgharzadeh et al. (25), which only included neuroblastoma
patients with stage IV diseases without MYCN amplification
(Children's Hospital Los Angeles cohort). Indeed, we observed
higher MIRHG1 expression in the patients with poor outcome
in this data set (P = 0.0008; Fig. 5A), confirming that high ex-
pression level of MIRHG1 was significantly associated with
poor prognosis (P = 0.0149; Fig. 5B). Furthermore, we examined
if the expression level ofMIRHG1 added any predictive power to
the current Children's Oncology Group risk-stratification in this
data set. Because the intermediate-risk patients in Children's
Hospital Los Angeles cohort all survived, we could not build a
Cox regression model using the Children's Oncology Group
risk-stratification criteria in the multivariate analysis. Instead,
we used the available risk factors (age and histology) in this
analysis (Table 3). Multivariate analysis in this data set again
showed that MIRHG1 expression is a significant prognostic

Fig. 4. High MIRHG1 expression is significantly correlated with poor clinical outcome in neuroblastoma patients. A, box plot of MIRHG1 expression in
neuroblastoma primary tumors and cell lines shows that MIRHG1 is expressed at a higher level in high-stage (P = 0.0007) and MYCN-amplified (P = 0.0005)
neuroblastoma tumors as well as in the cell lines (P = 0.01). Normal samples express lower level of MIRHG1 (P = 0.005). Normal, normal tissues;
ST, stage; CL, cell line; +, MYCN amplification; -, MYCN not amplified. B, Kaplan-Meier curve for survival probability using the mRNA level of MIRHG1
in a published NCI neuroblastoma patient cohort (23) shows that MIRHG1 expression level can predict the outcomes of neuroblastoma patients. Median
expression of MIRHG1 was used as the cutoff, and P value is calculated using a log-rank test.

Table 2. Survival analyses of NCI cohort

Parameter HR 95% CI low 95% CI high P

Univariate analysis
Age (≥18 mo vs <18 mo) 14.9 4.28 52.2 2.2E-5
INSS stage (III&IV vs I&II) 13.7 1.83 103 0.011
MYCN (amp. vs non-amp.) 10.3 3.78 28.2 5.3E-6
COG risk (high vs low & intermediate) 30.1 4.00 227 9.4E-4
MIRHG1 (high vs low expression) 6.68 2.14 20.9 1.1E-3

Multivariate analysis
COG risk (high vs low & intermediate) 22.9 3.00 175 2.5E-3
MIRHG1 (high vs low expression) 4.03 1.29 12.6 0.016

NOTE: Expression of MIRHG1 predicts the outcome of neuroblastoma patients independently from current Children's Oncology Group risk-
stratification in the NCI cohort (23). Cox regression models were used in both univariate and multivariate analyses.
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marker independent from Children's Oncology Group risk-strat-
ification factors (Table 3).

Discussion

The expression patterns of microRNA represent novel meth-
ods for categorizing pediatric cancers and have potential advan-
tages over mRNA profiling. First, the relatively smaller number
of microRNA in the human genome (∼1,000 for microRNA ver-
sus tens of thousands for mRNA) makes their profiles less com-
plex. Second, because of the short length of microRNAs, they
are better preserved in clinical samples such as tumor specimen
and paraffin sections (26, 27). Reports have suggested that
microRNA expression profiles may be better predictors of diag-
nosis and clinical outcome of human diseases than mRNA-
based methods (28, 29); however, a recent study on NCI-60 cell
lines showed that mRNA profiles are more informative for dis-
criminating tissue types than microRNA profiles (30). In our
study, the 57 samples clustered according to the major cancer
types using the microRNA expression profiles (Fig. 1). However,
the microRNA expression profiles did not perform as well as
mRNA expression profiles (7, 8) in separating these samples into
their cancer types by hierarchical clustering (data not shown).

Therefore, the value of using global microRNAs profiles in cancer
classification is still unclear.

We identified 14 significantly differentially expressed micro-
RNAs distinguishing neuroblastoma from rhabdomyosarcoma
in these xenografts. Of these, 8 were validated by TaqMan re-
verse transcription-PCR in an independent cohort of primary
human tumor samples, indicating the potential utility of these
microRNAs as tumor-specific biomarkers for tumor classifica-
tion. However, due to the rarity of pediatric solid tumors, this
study focused on validation ofmicroRNAs only in neuroblastoma
and rhabdomyosarcoma. Although the xenografts and cell lines
are kept in an artificial environment, studies have shown that
they express a large panel of genes resembling their cor-
responding human tumors (7, 8). Furthermore, studies in the
xenografts and cell lines have yielded valuable information in
a preclinical setting such as the Pediatric Preclinical Testing
Program8 to identify effective agents for these tumors (7, 8).
Therefore, we believe our approach in this study is valid and the
results from this study showed that we identified cancer-specific
microRNAs. However, these microRNA signatures need to be

Fig. 5. Predictive power ofMIRHG1 expression is validated in an independent published Children's Hospital Los Angeles patient cohort, which only
consists of neuroblastoma patients with stage IV diseases and withoutMYCN amplification (25). A, the high expression level ofMIRHG1 is also observed in the
patients of poor outcome (P = 0.0008). The expression ofMIRHG1 significantly correlated with adverse outcome in a Kaplan-Meier plot (P = 0.0149; B) and
Cox models (P < 0.05; Table 3). Median expression ofMIRHG1 was used as the cutoff.

Table 3. Survival analyses of CHLA cohort

Parameter HR 95% CI low 95% CI high P

Univariate analysis
Age (≥18 mo vs <18 mo) 23.2 5.61 96.0 1.4E-5
Histology (unfavor vs favor) 19.0 4.60 78.6 4.8E-5
MIRHG1 (high vs low expression) 2.07 1.14 3.78 0.017

Multivariate analysis
Age (≥18 mo vs <18 mo) 21.9 1.05 455 0.046
Histology (unfavor vs favor) 1.03 0.05 21.6 0.980
MIRHG1 (high vs low expression) 1.87 1.02 3.42 0.043

NOTE: The expression of MIRHG1 significantly correlated with adverse outcome in Cox models (P < 0.05). Median expression of MIRHG1 was
used as the cutoff.

8 http://pptp.stjude.org/
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validated in a much larger study with human tumors before clin-
ical use as diagnostic markers.

In addition to potential use a diagnostic biomarkers, these
differentially expressed microRNAs may shed light to our un-
derstanding of the biology of these pediatric tumors, because
microRNA expression has been reported to associate with tissue
differentiation (31). Thus, tumor-specific microRNA profiles
may reveal not only the tissue origin of cancers but also its
biology in tumorigenesis. For example, miR-133a is expressed
during normal muscle development (31) and was found by us
to be expressed abundantly in rhabdomyosarcoma. Recently
miR-133a has been shown to play a critical role in the regulation
of myocyte growth (32, 33). Similarly, we found that miR-7,
124a, 137, and 218 were expressed at a high level in neuroblas-
toma samples, and their expression has been reported to be spe-
cific in neural tissues during zebrafish development (34). The
correlation between the expression levels of miR-218 and its
host gene, SLIT3, is the highest in our analysis (Supplementary
Table S2). SLIT family members have been implicated to play a
critical role in the formation of central nervous system (35). This
indicates that the expression of miR-218 from the SLIT3 tran-
script may also play a role in the differentiation of neural tissues.
Intriguingly, we have reported previously that SLIT3 is overex-
pressed in the poor-prognosis neuroblastoma (23). The high cor-
relation between SLIT3 and miR-218 expression suggests that
expression of miR-218may also predict poor prognosis. Recently,
Makeyev et al. have reported that miR-124 promotes neuronal
differentiation through inducing nervous system–specific alter-
native splicing (36) showing the importance of this microRNA
during neural development. Therefore, differentially expressed
microRNAs are likely to play important roles in the normal tissue
development as well as in the tumorigenesis of pediatric cancers.

Despite the increasing knowledge of microRNA expression
patterns in different biological systems including cancers, the
regulation of microRNA expression is largely unknown. We at-
tempted to determine if the genomic location of microRNAs
in relationship to their host genes affected the expression of
microRNAs. Using this pediatric tumor data set containing both
gene and microRNA expression profiles and a low stringent cut-
off (r > 0.34), surprisingly we observed that only 63% of micro-
RNAs residing within host genes in the same orientation
showed expression patterns that correlated with their host genes
(Fig. 3). Therefore, a gene unit is a more complicated functional
transcription unit than the protein coding gene itself, indicating
that there are multiple mechanisms to regulate microRNA levels
other than sharing the common promoter with their host genes.

Among all the microRNAs and their host gene with highly
correlated expression levels, OncomiR-1 (miR-17-92 cluster)
and its nonprotein coding host gene, MIRHG1 (also known
as C13orf25), are of particular interest due to its oncogenic po-
tential in human cancers (16, 17, 20). Although MIRHG1 and
the microRNAs in OncomiR-1 are correlated, the putative pro-

moter of MIRGH1 is ∼2,000 bp upstream of the E-boxes at the
OncomiR-1 locus (18, 20). It is therefore still possible that
MIRHG1 and OncomiR-1 are transcribed from different promo-
ters but are still coregulated. OncomiR-1 has been shown to be
directly transactivated by an important oncogene c-Myc (18),
andMYC oncogene family members are important transcription
factors often hyperactivated in many human cancers (37). There-
fore, OncomiR-1 can mediate at least some of the oncogenic
functions of MYC. Several recent studies have indicated that
MYCN, another MYC family member, can up-regulate OncomiR-
1 (19, 20, 38). Fontana et al. have shown that MYCN activates
OncomiR-1 cluster by directly binding to its promoter (20). This
is of particular interest because the MYCN gene is frequently
amplified in neuroblastoma and rhabdomyosarcoma (21, 22),
and this molecular characteristic is used in clinic to stratify treat-
ment for patients with neuroblastoma. In this study, we have
shown that the high expression of the OncomiR-1 host gene,
MIRHG1, is correlated with tumors with not only MYCN amplifi-
cation but also higher stages and poor prognosis. In addition,
Fontana et al. have shown the tumorigenic role ofOncomiR-1 clus-
ter in neuroblastoma cells by promoting cell growth (20). There-
fore, these studies indicate an important biological role of
OncomiR-1 cluster in the aggressive formof neuroblastoma. These
findings warrant future studies to characterize the oncogenic
mechanisms of individual microRNA encoded in this cluster and
explore the potential targeted therapies against these microRNAs.

In summary, we have shown that pediatric cancers cluster
according to their diagnosis based on microRNA expression pro-
files, and we identified 8 tumor-specific microRNAs for rhabdo-
myosarcoma and neuroblastoma. In addition, we have shown
evidence that the expression ofmicroRNAs located within protein
coding genes is coregulated with their host transcripts. Finally, we
showed that the high expression of a microRNA cluster host gene
MIRHG1 is significantly associated with aggressive neuroblasto-
ma. Our results indicate that MIRHG1 may play an important
biological role in aggressive neuroblastoma, and the predictive
value of MIRHG1 expression in neuroblastoma patients should
be further validated in a much larger cohort in future studies.
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